Perfusion Analysis Using High-Definition Indocyanine Green Angiography in Burn Comb Model

J Burn Care Res. 2024 Mar 4;45(2):373-383. doi: 10.1093/jbcr/irad156.

Abstract

Indocyanine green angiography (ICGA) has been widely employed for quantitative evaluation of the rat comb burn model, but the imaging equipment, imaging protocol, and fluorescence data interpretation of ICGA remain unsatisfactory. This study aims to provide better solutions for the application of ICGA in perfusion analysis. The rat comb burn model was established under a series of different comb contact durations, including 10, 20, 25, 30, 35, and 40 s. Indocyanine green angiography was used to analyze wound perfusion. In total, 16 rats were divided into ibuprofen and control groups for the burn model, and their perfusion was compared. A total of 16 identical models were divided into standard- and high-dose indocyanine green (ICG) groups, and ICGA was conducted to investigate the dynamic change in wound fluorescence. Escharectomy was performed under real-time fluorescence mapping and navigation. The results showed that a comb contact duration of 30 s was optimum for the burn model. Indocyanine green angiography could accurately evaluate the histologically determined depth of thermal injury and wound perfusion in the rat comb model. Digital subtraction of residual fluorescence was necessary for multiple comparisons of perfusion. Dynamic changes in fluorescence and necrotic tissues were observed more clearly by high-dose (0.5 mg/kg) ICG in angiography. In conclusion, perfusion analysis by ICGA can be used to assess the histologically determined depth of thermal injury and the impact of a specific treatment on wound perfusion. Indocyanine green angiography can help to identify necrotic tissue. The above findings and related imaging protocols lay the foundation for future research.

Keywords: burn progression; comb burn model; fluorescence; indocyanine green; perfusion.

MeSH terms

  • Angiography / methods
  • Animals
  • Burns* / diagnostic imaging
  • Burns* / drug therapy
  • Indocyanine Green* / therapeutic use
  • Perfusion
  • Rats

Substances

  • Indocyanine Green