The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support

Biotechnol Prog. 2024 Jan-Feb;40(1):e3394. doi: 10.1002/btpr.3394. Epub 2023 Oct 12.

Abstract

In this article, we have analyzed the interactions between enzyme crowding on a given support and its chemical modification (ethylenediamine modification via the carbodiimide route and picryl sulfonic (TNBS) modification of the primary amino groups) on the enzyme activity and stability. Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) were immobilized on octyl-agarose beads at two very different enzyme loadings, one of them exceeding the capacity of the support, one well under this capacity. Chemical modifications of the highly loaded and lowly loaded biocatalysts gave very different results in terms of activity and stability, which could increase or decrease enzyme activity depending on the enzyme support loading. For example, both lowly loaded biocatalysts increased their activity after modification while the effect was the opposite for the highly loaded biocatalysts. Additionally, the modification with TNBS of highly loaded CALB biocatalyst increased its stability while decrease the activity.

Keywords: modulation of enzyme activity; modulation of enzyme stability; protein-protein interactions.

MeSH terms

  • Enzyme Stability
  • Enzymes, Immobilized* / metabolism
  • Fungal Proteins / metabolism
  • Lipase* / metabolism
  • Sepharose

Substances

  • Lipase
  • Enzymes, Immobilized
  • Fungal Proteins
  • Sepharose