Ag-N-C single atom catalyst with resistance for Ag loss in acetylene hydrochlorination

Nanotechnology. 2023 Nov 3;35(3). doi: 10.1088/1361-6528/ad02a1.

Abstract

Ag-N-C catalyst was synthesized by the calcination process with AgNO3as precursors, active carbon as support, and melamine as an N source. Series of characterizations showed that Ag was transferred into AgCl during the active phase by HCl, and pyridinic structure in the support was bonded with Ag components. Then, Ag-N-C single atom catalyst (SAC) was obtained by washing Ag-N-C with acid, aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy showed that Ag presented in single atoms form, and Ag coordinated with the nitrogen atom in the support. Ag loss rate for Ag-N-C SAC was only 0.09% after running 10 h in acetylene hydrochlorination process, which was much smaller than Ag-N-C (57%), indicating that the presence of the Ag-N bond could be inhibiting Ag species loss.

Keywords: Ag component loss; Ag–N coordination; acetylene hydrochloride; single atom catalyst.