Identification and quantification of biosurfactants produced by the marine bacterium Alcanivorax borkumensis by hyphenated techniques

Anal Bioanal Chem. 2023 Dec;415(29-30):7067-7084. doi: 10.1007/s00216-023-04972-5. Epub 2023 Oct 11.

Abstract

A novel biosurfactant was discovered to be synthesized by the marine bacterium Alcanivorax borkumensis in 1992. This bacterium is abundant in marine environments affected by oil spills, where it helps to degrade alkanes and, under such conditions, produces a glycine-glucolipid biosurfactant. The biosurfactant enhances the bacterium's attachment to oil droplets and facilitates the uptake of hydrocarbons. Due to its useful properties expected, there is interest in the biotechnological production of this biosurfactant. To support this effort analytically, a method combining reversed-phase high-performance liquid chromatography (HPLC) with high-resolution mass spectrometry (HRMS) was developed, allowing the separation and identification of glycine-glucolipid congeners. Accurate mass, retention time, and characteristic fragmentation pattern were utilized for species assignment. In addition, charged-aerosol detection (CAD) was employed to enable absolute quantification without authentic standards. The methodology was used to investigate the glycine-glucolipid production by A. borkumensis SK2 using different carbon sources. Mass spectrometry allowed us to identify congeners with varying chain lengths (C6-C12) and degrees of unsaturation (0-1 double bonds) in the incorporated 3-hydroxy-alkanoic acids, some previously unknown. Quantification using CAD revealed that the titer was approximately twice as high when grown with hexadecane as with pyruvate (49 mg/L versus 22 mg/L). The main congener for both carbon sources was glc-40:0-gly, accounting for 64% with pyruvate and 85% with hexadecane as sole carbon source. With the here presented analytical suit, complex and varying glycolipids can be identified, characterized, and quantified, as here exemplarily shown for the interesting glycine-glucolipid of A. borkumensis.

Keywords: Charged-aerosol detection; Glucolipid; HPLC; Hydrocarbonoclastic bacteria; Mass spectrometry.

MeSH terms

  • Bacteria*
  • Biodegradation, Environmental
  • Carbon
  • Glycine
  • Pyruvic Acid*

Substances

  • n-hexadecane
  • Pyruvic Acid
  • Carbon
  • Glycine

Supplementary concepts

  • Alcanivorax borkumensis