CO2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO2 during 13 C breath testing in humans and animals

Rapid Commun Mass Spectrom. 2023 Nov 30;37(22):e9639. doi: 10.1002/rcm.9639.

Abstract

13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.

Publication types

  • Review

MeSH terms

  • Animals
  • Breath Tests
  • Carbon Dioxide*
  • Exhalation
  • Gases*
  • Humans

Substances

  • Carbon Dioxide
  • Gases