Molecular evaluation of sheep and goats isolates of Pasteurella multocida and their antibiotic resistance

Vet Res Forum. 2023;14(9):481-487. doi: 10.30466/vrf.2022.556438.3524. Epub 2023 Sep 15.

Abstract

Pasteurella multocida exists as a commensal in the upper respiratory tracts of livestock, and poultry, and causes a wide variety of diseases in humans and animals. This study aimed to investigate the incidence of P. multocida by bacteriological and molecular characterization in sheep and goats and screening the existence of capsule-specific genes and their antibiotic resistance pattern. Totally, 1650 nasopharyngeal swabs were collected from apparently healthy sheep and goats and 460 lung tissues were collected from slaughtered animals in Fars province, Iran. All samples were cultured and suspected colonies were examined by biochemical tests, antimicrobial assay and polymerase chain reaction (PCR). Among 165 P. multocida (104 sheep and 61 goats) isolates, the capA, capD, and capB genes were amplified in 98, 48, and 12 isolates, respectively. The occurrence of four virulence-associated genes of P. multocida isolates were determined by PCR. Most isolates harbored the toxA (79.40%) and hgbB genes (70.90%) and 59.40% of isolates had the pfhA gene. Almost half of the isolates (46.10%) contained the tbpA gene. According to the current study, P. multocida capsular type A had the most frequency followed by type D. In addition, the high frequency of tbpA, pfhA, toxA, and hgbB genes revealed that these genes are possibly important in the pathogenesis of P. multocida. Oxytetracycline, enrofloxacin, florfenicol, and tilmicosin were the most effective drugs.

Keywords: Capsular type; Pasteurella multocida; Polymerase Chain Reaction; Virulence genes.