O-Linked N-Acetylglucosamine Transferase Ensures Survival of Mouse Fetal Liver Hematopoietic Progenitors Partly by Regulating Bcl-xL and Oxidative Phosphorylation

Stem Cells. 2024 Jan 13;42(1):55-63. doi: 10.1093/stmcls/sxad076.

Abstract

O-linked N-acetylglucosamine transferase (OGT) critically regulates wide variety of biological processes such as gene expression, metabolism, stress response, signaling and proteostasis. In adult hematopoiesis, OGT is crucial for differentiation of B and T cells and the maintenance of hematopoietic stem cells (HSCs). However, a role for OGT in fetal liver (FL) hematopoiesis remains unknown. To investigate a role for OGT in FL hematopoiesis, we conditionally disrupted OGT in hematopoietic cells in developing FLs. Hematopoietic specific disruption of OGT resulted in embryonic lethality in late stage of gestation due to severe anemia and growth retardation. OGT loss led to profound reduction of differentiating erythroid cells and erythroid progenitors in FLs due to massive apoptosis. In addition, clonogenic capacity of FL cells was severely impaired by OGT loss. Interestingly, expression of BCL-XL, a well-known inhibitor of apoptosis in FL cells, dramatically decreased, and the levels of reactive oxygen species (ROS) were increased in OGT-deficient FL cells. Overexpression of Bcl-xL and reduction of ROS significantly restored the colony formation of OGT-deficient FL cells. This study revealed a novel role for OGT during embryogenesis, which ensures survival of FL hematopoietic cells partly by regulating Bcl-xL and oxidative phosphorylation.

Keywords: O-linked N-acetylglucosamine transferase; Bcl-xL; OGT; fetal liver; hematopoiesis; oxidative phosphorylation.

MeSH terms

  • Animals
  • Cell Differentiation
  • Liver / metabolism
  • Mice
  • N-Acetylglucosaminyltransferases* / genetics
  • Oxidative Phosphorylation*
  • Reactive Oxygen Species / metabolism

Substances

  • UDP-N-acetylglucosamine-peptide beta-N-acetylglucosaminyltransferase
  • Reactive Oxygen Species
  • N-Acetylglucosaminyltransferases