Three dimensional graphene promotes the proliferation of cholinergic neurons

Cells Tissues Organs. 2023 Oct 9. doi: 10.1159/000534255. Online ahead of print.

Abstract

Background: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.

Methods: In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.

Results: Immunofluorescence analysis, RT-PCR, western blotting and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.

Conclusions: These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.