Semilocal Meta-GGA Exchange-Correlation Approximation from Adiabatic Connection Formalism: Extent and Limitations

J Phys Chem A. 2023 Oct 19;127(41):8685-8697. doi: 10.1021/acs.jpca.3c03976. Epub 2023 Oct 9.

Abstract

The incorporation of a strong-interaction regime within the approximate semilocal exchange-correlation functionals still remains a very challenging task for density functional theory. One of the promising attempts in this direction is the recently proposed adiabatic connection semilocal correlation (ACSC) approach [Constantin, L. A.; Phys. Rev. B 2019, 99, 085117] allowing one to construct the correlation energy functionals by interpolation of the high and low-density limits for the given semilocal approximation. The current study extends the ACSC method to the meta-generalized gradient approximations (meta-GGA) level of theory, providing some new insights in this context. As an example, we construct the correlation energy functional on the basis of the high- and low-density limits of the Tao-Perdew-Staroverov-Scuseria (TPSS) functional. Arose in this way, the TPSS-ACSC functional is one-electron self-interaction free and accurate for the strictly correlated and quasi-two-dimensional regimes. Based on simple examples, we show the advantages and disadvantages of ACSC semilocal functionals and provide some new guidelines for future developments in this context.