Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling

Bioact Mater. 2023 Sep 27:32:37-51. doi: 10.1016/j.bioactmat.2023.09.003. eCollection 2024 Feb.

Abstract

Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the "armored-tank" shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the "fired" PCTL from "armored-tank" actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this "armored-tank" surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.

Keywords: Amyloid-like protein; Antifouling; Antithrombosis; Super-Hydrophilicity; Zwitterionic polymers.