EQNAS: Evolutionary Quantum Neural Architecture Search for Image Classification

Neural Netw. 2023 Nov:168:471-483. doi: 10.1016/j.neunet.2023.09.040. Epub 2023 Sep 29.

Abstract

Quantum neural network (QNN) is a neural network model based on the principles of quantum mechanics. The advantages of faster computing speed, higher memory capacity, smaller network size and elimination of catastrophic amnesia make it a new idea to solve the problem of training massive data that is difficult for classical neural networks. However, the quantum circuit of QNN are artificially designed with high circuit complexity and low precision in classification tasks. In this paper, a neural architecture search method EQNAS is proposed to improve QNN. First, initializing the quantum population after image quantum encoding. The next step is observing the quantum population and evaluating the fitness. The last is updating the quantum population. Quantum rotation gate update, quantum circuit construction and entirety interference crossover are specific operations. The last two steps need to be carried out iteratively until a satisfactory fitness is achieved. After a lot of experiments on the searched quantum neural networks, the feasibility and effectiveness of the algorithm proposed in this paper are proved, and the searched QNN is obviously better than the original algorithm. The classification accuracy on the mnist dataset and the warship dataset not only increased by 5.31% and 4.52%, respectively, but also reduced the parameters by 21.88% and 31.25% respectively. Code will be available at https://gitee.com/Pcyslist/models/tree/master/research/cv/EQNAS, and https://github.com/Pcyslist/EQNAS.

Keywords: Neural architecture search (NAS); Quantum circuits; Quantum evolutionary algorithm (QEA); Quantum neural networks (QNN).

MeSH terms

  • Algorithms*
  • Biological Evolution
  • Neural Networks, Computer*
  • Rotation