Catalyst Engineering for the Selective Reduction of CO2 to CH4 : A First-Principles Study on X-MOF-74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn)

Chemphyschem. 2023 Dec 14;24(24):e202300645. doi: 10.1002/cphc.202300645. Epub 2023 Nov 10.

Abstract

The conversion of carbon dioxide (CO2 ) into more valuable chemical compounds represents a critical objective for addressing environmental challenges and advancing sustainable energy sources. The CO2 reduction reaction (CO2 RR) holds promise for transforming CO2 into versatile feedstock materials and fuels. Leveraging first-principles methodologies provides a robust approach to evaluate catalysts and steer experimental efforts. In this study, we examine the CO2 RR process using a diverse array of representative cluster models derived from X-MOF-74 (where X encompasses Mg, Mn, Fe, Co, Ni, Cu, or Zn) through first-principles methods. Notably, our investigation highlights the Fe-MOF-74 cluster's unique attributes, including favorable CO2 binding and the lowest limiting potential of the studied clusters for converting CO2 to methane (CH4 ) at 0.32 eV. Our analysis identified critical factors driving the selective CO2 RR pathway, enabling the formation CH4 on the Fe-MOF-74 cluster. These factors involve less favorable reduction of hydrogen to H2 and strong binding affinities between the Fe open-metal site and reduction intermediates, effectively curtailing desorption processes of closed-shell intermediates such as formic acid (HCOOH), formaldehyde (CH2 O), and methanol (CH3 OH), to lead to selective CH4 formation.

Keywords: CO2 reduction; Density Functional Theory; Metal Organic Framework.