A five-carbon unsaturated Criegee intermediate: synthesis, spectroscopic identification, and theoretical study of 3-penten-2-one oxide

Chem Sci. 2023 Sep 5;14(38):10471-10477. doi: 10.1039/d3sc03993e. eCollection 2023 Oct 4.

Abstract

Biogenic alkenes, such as isoprene and α-pinene, are the predominant source of volatile organic compounds (VOCs) emitted into the atmosphere. Atmospheric processing of alkenes via reaction with ozone leads to formation of zwitterionic reactive intermediates with a carbonyl oxide functional group, known as Criegee intermediates (CIs). CIs are known to exhibit a strong absorption (π* ← π) in the near ultraviolet and visible (UV-vis) region due to the carbonyl oxide moiety. This study focuses on the laboratory identification of a five-carbon CI with an unsaturated substituent, 3-penten-2-one oxide, which can be produced upon atmospheric ozonolysis of substituted isoprenes. 3-Penten-2-one oxide is generated in the laboratory by photolysis of a newly synthesized precursor, (Z)-2,4-diiodopent-2-ene, in the presence of oxygen. The electronic spectrum of 3-penten-2-one oxide was recorded by UV-vis induced depletion of the VUV photoionization signal on the parent m/z 100 mass channel using a time-of-flight mass spectrometer. The resultant electronic spectrum is broad and unstructured with peak absorption at ca. 375 nm. To complement the experimental findings, electronic structure calculations are performed at the CASPT2(12,10)/aug-cc-pVDZ level of theory. The experimental spectrum shows good agreement with the calculated electronic spectrum and vertical excitation energy obtained for the lowest energy conformer of 3-penten-2-one oxide. In addition, OH radical products resulting from unimolecular decay of energized 3-penten-2-oxide CIs are detected by UV laser-induced fluorescence. Finally, the experimental electronic spectrum is compared with that of a four-carbon, isoprene-derived CI, methyl vinyl ketone oxide, to understand the effects of an additional methyl group on the associated electronic properties.