An Inexpensive System to Investigate the Daily Rhythms of Insects

J Am Mosq Control Assoc. 2023 Sep 1;39(3):203-207. doi: 10.2987/23-7137.

Abstract

Insects' daily rhythms occur in response to their surrounding environment. Recognizing the daily rhythms of pathogen vectors can be helpful in developing effective, safe, and sustainable management strategies to control vector insects and reduce the spread of pathogens. However, studying the daily rhythm of insects often requires costly or labor-intensive trapping, and few tools are available to quantify daily rhythms in the field. We developed a simple collection system to study the flight activity of mosquitoes and biting midges using a contained, programmable, rotating, automatic pet feeder. A diverse assemblage of nuisance and vector species were collected with our system, including mosquitoes of the genera Aedes, Anopheles, Culex, and Deinocerites and biting midges (Ceratopogonidae) such as the coastal pest Culicoides furens. Surprisingly, mosquitoes and biting midges were less active during crepuscular periods (1800-2100h; 0600-0900h) than during dark periods (2100h-2400h; 0300h-0600h). A number of urban and agricultural pest insects were captured, including Coleoptera, Hymenoptera, Isoptera and Lepidoptera. This study shows that relatively inexpensive products can be adapted to study the daily rhythms of flying vectors and nuisance arthropods, with implications for vector-borne disease transmission and control. The collection system could also be used with flight intercept or pitfall traps, permitting study of the circadian activity patterns of a diverse array of arthropods.

Keywords: Circadian rhythm; flight activity; vector control; vector-borne disease.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aedes*
  • Animals
  • Anopheles*
  • Culex*
  • Mosquito Vectors