Pyroelectric catalytic performance of Sm3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 for organic dyes: degradation efficiency, kinetics and pyroelectric catalytic mechanism

Dalton Trans. 2023 Oct 24;52(41):14917-14927. doi: 10.1039/d3dt02395h.

Abstract

The development of photocatalysis is hindered, in part, by the quick recombination of photogenerated carriers and the instability of light sources. In this study, the problem of too-fast electron-hole pair compounding in photocatalysis is effectively regulated by the polarization field of pyroelectric materials using the pyroelectric method. Self-polarized pyroelectric materials that depend on temperature variations can generate usable electrical energy and polarized charge carriers to degrade organic pollutants. Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) is a relaxor ferroelectric material with spontaneous polarization characteristics. The PMN-0.30PT:1 mol%Sm3+ catalyst was prepared by applying the high-temperature solid-state reaction method. Under the dark condition and nine cold-hot cycles of 23 °C-68 °C, using H2O2-assisted PMN-0.30PT:1 mol%Sm3+ as a catalyst, the degradation rate of rhodamine 6G (10 mg L-1) was 94.3 ± 2.5%. In addition, the degradation rates of 88.52% and 64.32% were obtained for rhodamine B (10 mg L-1) and methylene blue (10 mg L-1), respectively. This study provides a new approach to the pyroelectric catalytic degradation of organic pollutants.