Building Ion-Conductive Supramolecular Elastomeric Protective Layer via Dynamic Hard Domain Design for Stable Zinc Metal Anodes

ACS Appl Mater Interfaces. 2023 Oct 18;15(41):48185-48195. doi: 10.1021/acsami.3c10154. Epub 2023 Oct 4.

Abstract

The instability of zinc metal anode caused by zinc dendrite growth and severe parasitic reactions has significantly restricted the extensive application of rechargeable aqueous zinc-ion batteries (RAZBs). Herein, based on the strategy of dynamic hard domains, we develop an ion-conductive supramolecular elastomer consisting of Zn salts and the polyurethane-urea-polypropylene glycol polymer skeleton. This elastomer combines high mechanical strength, high ionic conductivity, decent hydrophobicity, and high adhesion to stabilize the electrode-electrolyte interface. In the elastomer system, this elastomer can dynamically adapt to the volume changes of Zn anodes during repeated zinc plating/stripping processes through the reversible dissociation/reassociation of hierarchical hydrogen bonds (H-bonds) formed by the polar groups of urea and urethane moieties. Meanwhile, the coordination of Zn2+ with soft polypropylene glycol (PPG) segments contributes to fast ion transport. This hydrophobic elastomer can also effectively inhibit water-induced corrosion by shielding the active Zn metal from the aqueous electrolyte. Based on the above synergies, the surface-modified anode shows excellent cycling stability above 550 h at a high current density of 5 mA cm-2 and a capacity of 2.5 mAh cm-2. Moreover, the assembled Zn//MnO2 full cell also displayed an enhanced electrochemical performance. This work provides inspiration for the design of solid electrolyte interphase (SEI) layers in aqueous battery chemistry to accelerate the application of RAZBs.

Keywords: dynamic; hierarchical hydrogen bonds; ionic conductivity; zinc dendrite; zinc metal anode.