ISOTHERMAL RECOMBINANT POLYMERASE AMPLIFICATION AND CRIPSR(CAS12A) ASSAY DETECTION OF RENIBACTERIUM SALMONINARUM AS AN EXAMPLE FOR WILDLIFE PATHOGEN DETECTION IN ENVIRONMENTAL DNA SAMPLES

J Wildl Dis. 2023 Oct 1;59(4):545-556. doi: 10.7589/JWD-D-22-00128.

Abstract

Improving rapid detection methods for pathogens is important for research as we collectively aim to improve the health of ecosystems globally. In the northern hemisphere, the success of salmon (Oncorhynchus spp.) populations is vitally important to the larger marine, aquatic, and terrestrial ecosystems they inhabit. This has led to managers cultivating salmon in hatcheries and aquaculture to bolster their populations, but young salmon face many challenges, including diseases such as bacterial kidney disease (BKD). Early detection of the BKD causative agent, Renibacterium salmoninarum, is useful for managers to avoid outbreaks in hatcheries and aquaculture stocks to enable rapid treatment with targeted antibiotics. Isothermal amplification and CRIPSR-Cas12a systems may enable sensitive, relatively rapid, detection of target DNA molecules from environmental samples compared to quantitative PCR (qPCR) and culture methods. We used these technologies to develop a sensitive and specific rapid assay to detect R. salmoninarum from water samples using isothermal recombinase polymerase amplification (RPA) and an AsCas12a RNA-guided nuclease detection. The assay was specific to R. salmoninarum (0/10 co-occurring or closely related bacteria detected) and sensitive to 0.0128 pg/µL of DNA (approximately 20-40 copies/µL) within 10 min of Cas activity. This assay successfully detected R. salmoninarum environmental DNA in 14/20 water samples from hatcheries with known quantification for the pathogen via previous qPCR (70% of qPCR-positive samples). The RPA-CRISPR/AsCas12a assay had a limit of detection (LOD) of >10 copies/µL in the hatchery water samples and stochastic detection below 10 copies/µL, similar to but slightly higher than the qPCR assay. This LOD enables 37 C isothermal detection, potentially in the field, of biologically relevant levels of R. salmoninarum in water. Further research is needed to develop easy-to-use, cost-effective, sensitive RPA/CRISPR-AsCas12a assays for rapidly detecting low concentrations of wildlife pathogens in environmental samples.

Keywords: Renibacterium salmoninarum; Bacterial kidney disease; CRISPR; DETECTR; Salmonid disease; eDNA; environmental DNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Wild
  • CRISPR-Cas Systems
  • DNA, Environmental*
  • Ecosystem
  • Fish Diseases* / diagnosis
  • Fish Diseases* / microbiology
  • Kidney Diseases* / microbiology
  • Kidney Diseases* / veterinary
  • Micrococcaceae* / genetics
  • Salmon / genetics
  • Salmon / microbiology
  • Water

Substances

  • DNA, Environmental
  • Water

Supplementary concepts

  • Renibacterium salmoninarum