Cardiomyocyte-specific adenylyl cyclase type-8 overexpression induces activation of RelA together with myocardial and systemic inflammation

bioRxiv [Preprint]. 2023 Dec 4:2023.07.15.549173. doi: 10.1101/2023.07.15.549173.

Abstract

Background: Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TG AC8 ) are under a constant state of severe myocardial stress. They have a remarkable ability to adapt to this stress, but they eventually develop accelerated cardiac aging and experience reduced longevity.

Results: Here we demonstrate that activation of ACVIII in cardiomyocytes results in cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells and myocardial smooth muscle cells, expansion of myocardial immune cells, increase in serum levels of inflammatory cytokines, and changes in the size or composition of lymphoid organs. These changes precede the appearance of cardiac fibrosis. We provide evidence indicating that ACVIII-driven RelA activation in cardiomyocytes is mediated by calcium-Protein Kinase A (PKA) signaling.

Conclusions: Using a model of chronic cardiomyocyte stress and accelerated aging we highlight a novel, PKA/RelA-dependent connection between cardiomyocyte stress, myocardial para-inflammation and systemic inflammation. These findings point to RelA-mediated signaling in cardiomyocytes and inter-organ communication between the heart and lymphoid organs as novel potential therapeutic targets to reduce age-associated myocardial deterioration.

Publication types

  • Preprint