Spectral photon-counting CT: Image quality evaluation using a metal-containing bovine bone specimen

Eur J Radiol. 2023 Nov:168:111110. doi: 10.1016/j.ejrad.2023.111110. Epub 2023 Sep 23.

Abstract

Purpose: To find the optimal imaging parameters for a photon-counting detector CT (PCD-CT) and to compare it to an energy-integrating detector CT (EID-CT) in terms of image quality and metal artefact severity using a metal-containing bovine knee specimen.

Methods: A bovine knee with a stainless-steel plate and screws was imaged in a whole-body research PCD-CT at 120 kV and 140 kV and in an EID dual-source CT (DSCT) at Sn150 kV and 80/Sn150 kV. PCD-CT virtual monoenergetic 72 and 150 keV images and EID-CT images processed with and without metal artefact reduction algorithms (iMAR) were compared. Four radiologists rated the visualisation of bony structures and metal artefact severity. The Friedman test and Wilcoxon signed-rank test with Bonferroni's correction were used. P-values of ≤ 0.0001 were considered statistically significant. Distributions of HU values of regions of interest (ROIs) in artefact-affected areas were analysed.

Results: PCD-CT 140 kV 150 keV images received the highest scores and were significantly better than EID-CT Sn150 kV images. PCD-CT 72 keV images were rated significantly lower than all the others. HU-value variation was larger in the 120 kV and the 72 keV images. The ROI analysis revealed no large difference between scanners regarding artefact severity.

Conclusion: PCD-CT 140 kV 150 keV images of a metal-containing bovine knee specimen provided the best image quality. They were superior to, or as good as, the best EID-CT images; even without the presumed advantage of tin filter and metal artefact reduction algorithms. PCD-CT is a promising method for reducing metal artefacts.

Keywords: Diagnostic imaging; Image quality; Metal artefacts; Musculoskeletal imaging; PCD-CT.

MeSH terms

  • Algorithms
  • Animals
  • Cattle
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Metals*
  • Phantoms, Imaging
  • Tomography, X-Ray Computed* / methods

Substances

  • Metals