Neural Networks Push the Limits of Luminescence Lifetime Nanosensing

Adv Mater. 2023 Dec;35(52):e2306606. doi: 10.1002/adma.202306606. Epub 2023 Nov 20.

Abstract

Luminescence lifetime-based sensing is ideally suited to monitor biological systems due to its minimal invasiveness and remote working principle. Yet, its applicability is limited in conditions of low signal-to-noise ratio (SNR) induced by, e.g., short exposure times and presence of opaque tissues. Herein this limitation is overcome by applying a U-shaped convolutional neural network (U-NET) to improve luminescence lifetime estimation under conditions of extremely low SNR. Specifically, the prowess of the U-NET is showcased in the context of luminescence lifetime thermometry, achieving more precise thermal readouts using Ag2 S nanothermometers. Compared to traditional analysis methods of decay curve fitting and integration, the U-NET can extract average lifetimes more precisely and consistently regardless of the SNR value. The improvement achieved in the sensing performance using the U-NET is demonstrated with two experiments characterized by extreme measurement conditions: thermal monitoring of free-falling droplets, and monitoring of thermal transients in suspended droplets through an opaque medium. These results broaden the applicability of luminescence lifetime-based sensing in fields including in vivo experimentation and microfluidics, while, hopefully, spurring further research on the implementation of machine learning (ML) in luminescence sensing.

Keywords: luminescence lifetime; luminescence thermometry; machine learning; neural networks; sensing.

MeSH terms

  • Luminescence*
  • Neural Networks, Computer
  • Thermometry*