Ecological engineering in low land rice for brown plant hopper, Nilaparvata lugens (Stål) management

PeerJ. 2023 Sep 27:11:e15531. doi: 10.7717/peerj.15531. eCollection 2023.

Abstract

Rice field bunds and edges can act as near crop habitats, available for planting flowering plants to attract and conserve the natural enemies. We evaluated the effect of ecological engineering on the incidence of Brown Planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera; Delphacidae) and the abundance of its predators in the rice variety Pusa Basmati-1121. Plots included the oilseed crops viz. sesamum, sunflower and soybean, with plantings of flowering crops marigold, balsam and gaillardia as bund flora around the edges of rice plots. Ecologically engineered plots contained both crops+flowers and resulted in a significantly reduced BPH population per hill in rice plots for 2019 (6.3) and 2020 (9.4) compared to the control plots (9.8 and 14.4). Ecologically engineered plots also witnessed the delayed appearance of BPH during each growing season. Peak BPH populations are lower in the ecologically engineered plots than in the control grounds. Furthermore, the activity of natural enemies, viz., spiders, mirid bugs and rove beetles was the highest in rice fields planted with oilseed crops like sesamum, sunflower and soybean. Olfactory response studies showed that the attraction response of spiders toward sesamum and balsam leaves was more significant than in other crop plants. Rice yield was enhanced in plots planted with crops+flowers during both seasons compared to control plots. Planting of oilseed crops plants such as sesamum, sunflower and soybean with flowering crops such as marigold, balsam and gaillardia as bund flora on the bunds around the main rice field enhanced the natural enemy activity, suppressed the planthopper population, and increased yields. Based on the results, we recommend including ecological engineering techniques as one of the management components in the Integrated Pest Management programme for rice crops.

Keywords: Biological control; Ecological engineering; Floral resources; Integrated pest management; Natural enemies; Rice pests.

MeSH terms

  • Animals
  • Balsams
  • Crops, Agricultural
  • Ecosystem
  • Hemiptera* / physiology
  • Oryza*
  • Pest Control

Substances

  • Balsams

Grants and funding

The authors received no funding for this work.