Untargeted metabolomics revealed the effect of soybean metabolites on poly(γ-glutamic acid) production in fermented natto and its metabolic pathway

J Sci Food Agric. 2024 Feb;104(3):1298-1307. doi: 10.1002/jsfa.13011. Epub 2023 Oct 26.

Abstract

Background: Natto mucus is mainly composed of poly(γ-glutamic acid) (γ-PGA), which affects the sensory quality of natto and has some effective functional activities. The soybean metabolites that cause different γ-PGA contents in different fermented natto are unclear.

Results: In this study, we use untargeted metabolomics to analyze the metabolites of high-production γ-PGA natto and low-production γ-PGA natto and their fermented substrate soybean. A total of 257 main significantly different metabolites with the same trend among the three comparison groups were screened, of which 114 were downregulated and 143 were upregulated. Through the enrichment of metabolic pathways, the metabolic pathways with significant differences were purine metabolism, nucleotide metabolism, fructose and mannose metabolism, anthocyanin biosynthesis, isoflavonoid biosynthesis and the pentose phosphate pathway.

Conclusion: For 114 downregulated main significantly different metabolites with the same trend among the three comparison groups, Bacillus subtilis (natto) may directly decompose them to synthesize γ-PGA. Adding downregulated substances before fermentation or cultivating soybean varieties with the goal of high production of such substances has a great effect on the production of γ-PGA by natto fermentation. The enrichment analysis results showed the main pathways affecting the production of γ-PGA by Bacillus subtilis (natto) using soybean metabolites, which provides a theoretical basis for the production of γ-PGA by soybean and promotes the diversification of natto products. © 2023 Society of Chemical Industry.

Keywords: different metabolites; metabolic pathway; natto; soybean; untargeted metabolomics; γ-PGA.

MeSH terms

  • Bacillus subtilis / metabolism
  • Fermentation
  • Glutamic Acid / metabolism
  • Glycine max*
  • Polyglutamic Acid / analysis
  • Polyglutamic Acid / metabolism
  • Secondary Metabolism
  • Soy Foods* / analysis

Substances

  • poly(gamma-glutamic acid)
  • Glutamic Acid
  • Polyglutamic Acid