Contrasting Effects of Leaf Litter Quality and Diversity on Oviposition of Mosquitoes

Neotrop Entomol. 2023 Dec;52(6):1018-1026. doi: 10.1007/s13744-023-01085-7. Epub 2023 Oct 2.

Abstract

The quality and diversity of leaf litter are important variables in determining the availability of energy in detritus-based food webs. These factors can be represented by the stoichiometric proportion between carbon and multiple nutrients, and the mixture of litter from different taxonomic and/or functional origins. In aquatic ecosystems, factors that accelerate litter decomposition can influence the secondary productivity of planktonic microbiota, which act as a link between litter and higher trophic levels. This study aimed to analyze the influence of litter quality and diversity on the oviposition behavior of medically important mosquitoes. We hypothesized that both factors would have a positive effect on the attraction of female mosquitoes and would stimulate a greater amount of oviposition. To test this hypothesis, microcosms containing isolated leaf litter leachates from four plant species were used to manipulate gradients of litter quality, and microcosms with all leachates combined were used to test the effects of litter diversity. The results showed a positive effect of litter quality (p < 0.05) on mosquito oviposition rate, with lower C:P ratio litter species (high-quality litter) presenting higher oviposition rates than litter species with high C:P ratios (low-quality litter). However, contrary to our expectations, litter diversity had a negative effect (p = 0.002) on the magnitude of egg-laying by mosquitoes. Our results highlight the importance of litter quality and diversity for insect reproductive behavior. Our data shows that litter quality can serve as a crucial indicator of a suitable environment utilized by female mosquitoes for oviposition. This finding can enhance our ability to understand and develop effective methods for mitigating the reproduction of medically significant mosquitoes, whether by allowing us to predict, based on the composition of vegetation species, areas more prone to mosquito infestation, or by using high-quality litter in oviposition traps. Furthermore, maintaining vegetation diversity can help control mosquito reproduction.

Keywords: Decomposition; Ecological stoichiometry; Litter-mixing effects; Reproductive behavior; Vector-borne diseases.

MeSH terms

  • Animals
  • Culicidae*
  • Ecosystem*
  • Female
  • Food Chain
  • Oviposition
  • Plant Leaves