Effects of lipid saturation on bicelle to vesicle transition of a binary phospholipid mixture: a molecular dynamics simulation study

Soft Matter. 2023 Oct 11;19(39):7655-7662. doi: 10.1039/d3sm00904a.

Abstract

Controlling the transition from lipid bicelles to vesicles is essential for producing engineered vesicles. We perform coarse-grained molecular dynamics (CGMD) simulations of unsaturated/saturated lipid mixtures to clarify the effects of lipid unsaturation on vesiculation at the molecular scale. The results demonstrate that vesiculation depends on the concentration of unsaturated lipids and the degree of unsaturation. The probability of vesiculation increases linearly with the apparent unsaturated lipid concentration at a low degree of unsaturation. Higher degrees of unsaturation lead to phase segregation within the binary bicelles, reducing the probability of vesiculation. A comparison between CGMD simulations and the conventional theory of vesiculation shows that the theoretical predictions of binary lipid systems must explicitly include phase segregation effects. Furthermore, simulations with biased lipid distributions reveal that vesiculation is facilitated by the preconcentration of unsaturated lipids in the core region of the bicelle but is then temporally limited as the unsaturated lipids move to the bicelle edges. These findings advance theoretical and experimental studies on binary lipid systems and promote the development of tailor-made vesicles.