Using Avian Skin Explants to Study Tissue Patterning and Organogenesis

J Vis Exp. 2023 Sep 15:(199). doi: 10.3791/65580.

Abstract

The developing avian skin during embryogenesis is a unique model that can provide valuable insights into tissue patterning. Here three variations on skin explant cultures to examine different aspects of skin development are described. First, ex vivo organ cultures and manipulations offer researchers opportunities to observe and study the development of feather buds directly. Skin explant culture can grow for 7 days enabling direct analysis of cellular behavior and 4D imaging at intervals during this growth period. This also allows for physical and molecular manipulations of culture conditions to visualize tissue response. For example, growth factor-coated beads can be applied locally to induce changes in feather patterning in a limited area. Alternatively, viral transduction can be delivered globally in the culture media to up or downregulate gene expression. Second, the skin recombination protocol allows researchers to investigate tissue interactions between the epidermis and mesenchyme that are derived from different skin regions, different life stages, or different species. This affords an opportunity to test the time window in which the epithelium is competent to respond to signals and its ability to form different skin appendages in response to signals from different mesenchymal sources. Third, skin reconstitution using dissociated dermal cells overlaid with intact epithelium resets skin development and enables the study of the initial processes of periodic patterning. This approach also enhances our ability to manipulate gene expression among the dissociated cells before creating the reconstituted skin explant. This paper provides the three culture protocols and exemplary experiments to demonstrate their utility.

Publication types

  • Video-Audio Media
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Epithelium / metabolism
  • Feathers*
  • Organogenesis
  • Skin*