Effects of pemafibrate on left ventricular diastolic function in patients with type 2 diabetes mellitus: a pilot study

Diabetol Int. 2023 Jul 19;14(4):434-439. doi: 10.1007/s13340-023-00645-x. eCollection 2023 Oct.

Abstract

Aims/introduction: Diabetic cardiomyopathy (DCM) is characterized predominantly by diastolic dysfunction. The multiple mechanisms underlying DCM include altered energy substrate utilization. Recent studies indicate that PPARα plays an important role in the pathogenesis of lipotoxic cardiomyopathy. Pemafibrate is known to be a selective PPARα modulator (SPPARMα). We thus investigated the effects of pemafibrate on cardiac diastolic function in patients with type 2 diabetes.

Materials and methods: Seventeen patients with type 2 diabetes (T2D) and hypertriglyceridemia were screened and treated with pemafibrate at a dose of 0.2 mg/day for 8-16 weeks. Fourteen patients were eligible for analysis. Echocardiography was used for assessment of diastolic function. Early diastolic filling velocity (E), late atrial filling velocity (A) and the E/A ratio were included in this study. Peak early diastolic annular velocities (e') were also assessed using color tissue Doppler images. The primary endpoints were changes in the ratio of E to A (E/A), e', and the ratio of E to e' (E/e') from baseline.

Results: Pemafibrate significantly increased average e' (7.24 ± 0.58 vs 7.94 ± 0.67, p = 0.019) and a significant reduction in E/e' (9.01 ± 0.94 vs 8.20 ± 0.91, p = 0.041). The increase in e' was significantly related to increases in fasting blood glucose (r = 0.607, p = 0.021) and non-esterified fatty acid (r = 0.592, p = 0.026).

Conclusion: Pemafibrate improved diastolic function in patients with T2D and hypertriglyceridemia, suggesting that PPARα activation by pemafibrate prevents the development of DCM at an early stage.

Keywords: Diabetic cardiomyopathy; Diastolic function; Energy substrate; Pemafibrate.