On photokinetics under monochromatic light

Front Chem. 2023 Sep 14:11:1233151. doi: 10.3389/fchem.2023.1233151. eCollection 2023.

Abstract

The properties of photokinetics under monochromatic light have not yet been fully described in the literature. In addition, for the last 120 years or so, explicit, handy model equations that can map out the kinetic behaviour of photoreactions have been lacking. These gaps in the knowledge are addressed in the present paper. Several general features of such photokinetics were investigated, including the effects of initial reactant concentration, the presence of spectator molecules, and radiation intensity. A unique equation, standing for a pseudo-integrated rate law, capable of outlining the kinetic behaviour of any photoreaction is proposed. In addition, a method that solves for quantum yields and absorption coefficients of all species of a given photoreaction is detailed. A metric (the initial velocity) has been adopted, and its reliability for the quantification of several effects was proven by theoretical derivation, Runge-Kutta numerical integration calculations and through the model equation proposed. Overall, this study shows that, under monochromatic light, photoreaction kinetics is well described by Φ-order kinetics, which is embodied by a unifying model equation. This paper is aimed at contributing to rationalising photokinetics via reliable, easy-to-use mathematical tools.

Keywords: actinometry; monochromatic light; photokinetics; quantum yield; solving kinetics; Φ-order kinetics.

Grants and funding

This work received financial support from De Montfort University.