PCIF1, the only methyltransferase of N6,2-O-dimethyladenosine

Cancer Cell Int. 2023 Oct 1;23(1):226. doi: 10.1186/s12935-023-03066-7.

Abstract

N6-methyladenosine(m6A), is the most abundant post-transcriptional modification of mRNA in biology. When the first nucleotide after the m7G cap is adenosine, it is methylated at the N6 position to form N6,2-O-dimethyladenosine (m6Am). m6Am is a reversible modification located at the first transcribed nucleotide, which is present in about 30% of cellular mRNAs, thus m6Am can have a significant impact on gene expression in the transcriptome. Phosphorylated CTD interaction factor 1(PCIF1), the unique and specific methyltransferase of m6Am, has been shown to affect mRNA stability, transcription, and translation. Several studies have shown that PCIF1 is clearly associated with tumor, viral, and endocrine diseases. Moreover, PCIF1 may be related to the tumor microenvironment, immune cell typing, and programmed cell death protein 1(PD-1) drug resistance. Here, we summarize the mechanism of PCIF1 involvement in mRNA modifications, and outline m6Am modifications and diseases in which PCIF1 is involved. We also summarized the role of PCIF1 in immune and immune checkpoint blockade(ICB) treatment, and predicted the possibility of PCIF1 as a biomarker and therapeutic target.

Keywords: Immunity; N6,2-O-dimethyladenosine; PCIF1; PD-1.

Publication types

  • Review