Impact of somatic mutations and transcriptomic alterations on cancer aneuploidy

Biomed Res. 2023;44(5):187-197. doi: 10.2220/biomedres.44.187.

Abstract

Aneuploidy has been recognized as one of hallmark of tumorigenesis since the early 20th century. Recent developments in structural variation analysis in the human genome have revealed the diversity of aneuploidy in cancer. However, the effects of gene mutation and expression in tumors on aneuploidy remain poorly understood. Here, we performed whole exome analysis of over 5,000 Japanese cancer cases and investigated the impact of somatic mutations and gene expression alterations on aneuploidy. First, we evaluated tumor content and genomic alterations that could influence aneuploidy. Next, we compared the aneuploidy frequency in 18 cancer types and observed that TP53 mutations were associated with the aneuploidy on specific chromosomes in colorectal and gastric cancers. Finally, we used expression analysis to isolate pathways involved in aneuploidy accumulation from tumors without TP53 mutations. Chromosomal instability and cell cycle aberration were associated with aneuploidy in TP53 wild-type tumors, and 26 commonly upregulated genes were identified in aneuploidy-high solid tumors without TP53 mutations. Among them, two cancer-related genes (CENPA and PBK) were involved in aneuploidy. Our integrated analysis revealed that both TP53 mutations and transcriptomic alterations independent of somatic mutations affect aneuploidy accumulation. Our findings will facilitate further understanding of diverse aneuploidies in the tumorigenesis.

MeSH terms

  • Aneuploidy
  • Carcinogenesis / genetics
  • Humans
  • Mutation
  • Neoplasms* / genetics
  • Transcriptome*