Can Optical Surface Imaging Replace Non-coplanar Cone-beam Computed Tomography for Non-coplanar Set-up Verification in Single-isocentre Non-coplanar Stereotactic Radiosurgery and Hypofractionated Stereotactic Radiotherapy for Single and Multiple Brain Metastases?

Clin Oncol (R Coll Radiol). 2023 Dec;35(12):e657-e665. doi: 10.1016/j.clon.2023.09.007. Epub 2023 Sep 22.

Abstract

Aims: To conduct a direct comparison regarding the non-coplanar positioning accuracy between the optical surface imaging system Catalyst HDTM and non-coplanar cone-beam computed tomography (NC-CBCT) in intracranial single-isocentre non-coplanar stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HSRT).

Materials and methods: Twenty patients with between one and five brain metastases who underwent single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) SRS or HSRT were enrolled in this study. For each non-zero couch angle, both Catalyst HDTM and NC-CBCT were used for set-up verification prior to beam delivery. The set-up error reported by Catalyst HDTM was compared with the set-up error derived from NC-CBCT, which was defined as the gold standard. Additionally, the dose delivery accuracy of each non-coplanar field after using Catalyst HDTM and NC-CBCT for set-up correction was measured with SRS MapCHECKTM.

Results: The median set-up error differences (absolute values) between the two positioning methods were 0.30 mm, 0.40 mm, 0.50 mm, 0.15°, 0.10° and 0.10° in the vertical, longitudinal, lateral, yaw, pitch and roll directions, respectively. The largest absolute set-up error differences regarding translation and rotation were 1.5 mm and 1.1°, which occurred in the longitudinal and yaw directions, respectively. Only 35.71% of the pairs of measurements were within the tolerance of 0.5 mm and 0.5° simultaneously. In addition, the non-coplanar field with NC-CBCT correction yielded a higher gamma passing rate than that with Catalyst HDTM correction (P < 0.05), especially for evaluation criteria of 1%/1 mm with a median increase of 12.8%.

Conclusions: Catalyst HDTM may not replace NC-CBCT for non-coplanar set-up corrections in single-isocentre NC-VMAT SRS and HSRT for single and multiple brain metastases. The potential role of Catalyst HDTM in intracranial SRS/HSRT needs to be further studied in the future.

Keywords: Brain metastases; hypofractionated stereotactic radiotherapy; non-coplanar cone-beam computed tomography; non-coplanar positioning accuracy; optical surface imaging; stereotactic radiosurgery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Neoplasms* / diagnostic imaging
  • Brain Neoplasms* / radiotherapy
  • Brain Neoplasms* / surgery
  • Carmustine
  • Cone-Beam Computed Tomography
  • Etoposide
  • Humans
  • Radiosurgery* / methods
  • Radiotherapy Planning, Computer-Assisted / methods

Substances

  • Carmustine
  • Etoposide