A three-year free-air experimental assessment of ozone risk on the perennial Vitis vinifera crop species

Environ Pollut. 2023 Dec 1:338:122626. doi: 10.1016/j.envpol.2023.122626. Epub 2023 Sep 29.

Abstract

Tropospheric ozone (O3) is an oxidative air pollutant that promotes damage to several crops, including grapevine, which is considered moderately resistant to O3 stress. To study the O3 effect on this perennial crop species under realistic environmental conditions, a three-year experiment was performed using an innovative O3-FACE facility located in the Mediterranean climate region, where the target species, Vitis vinifera cv. "Cabernet sauvignon", was exposed to three O3 levels: ambient (AA), 1.5 × ambient (×1.5), and 2 × ambient (×2.0). A stomatal conductance model parameterization was conducted, and O3-exposure (AOT40) and flux-based indices (PODy) were estimated. An assessment of O3-induced visible foliar injury (O3_VFI) was conducted by estimating VFI_Incidence (percentage of symptomatic leaves per branch) and VFI_Severity (average percentage of O3_VFI surface in symptomatic leaves). Biomass parameters were used to assess the cumulative O3 effect and calculate the most appropriate critical levels (CL) for a 5% yield loss and for the induction of 5, 10, and 15% of O3_VFI. We confirmed that the O3 effect on this grapevine variety VFI was cumulative and that POD0 values accumulated over the two or three years preceding the assessment were better related to the response variables than single-year values, with the response increasing with increasing O3 level. The estimated CL for 5% yield loss based on the O3-exposure index was 25 ppm h AOT40 and 21 or 23 ppm h for a 10% of VFI_Incidence or VFI_Severity, respectively. The suggested flux-based index value for 5% yield loss was 5.2 POD3 mmol m-2, and for 10% of VFI_Incidence or VFI_Severity, the values were 7.7 or 8.6 POD3 mmol m-2, respectively. The results presented in this study demonstrate that O3 risk assessment for this grapevine varietyproduces consistent and comparable results when using either yield or O3_VFI as response parameter.

Keywords: Critical level; FACE; Grape; Surface ozone pollution; Visible foliar injury.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Biomass
  • Crops, Agricultural
  • Ozone* / analysis
  • Plant Leaves / chemistry
  • Vitis*

Substances

  • Ozone
  • Air Pollutants