Targeting Melanoma with a phytochemical pool: Tailing Makisterone C

Comput Biol Med. 2023 Sep 16:166:107499. doi: 10.1016/j.compbiomed.2023.107499. Online ahead of print.

Abstract

Background and objective: According to World Health Organization, melanoma claims the lives of about 48000 people worldwide each year. The purpose of this study was to identify potential phytochemical pool from Diplazium esculentum against proteins that contribute to melanoma development.

Methods: The research was carried to locate potentially bioactive molecules and conduct a theoretical analysis of active ingredients from DE to impact melanoma. Network pharmacology, pharmacokinetics, protein network interaction, gene enrichment, survival, and infiltration analysis were conducted. Furthermore, molecular docking and molecular dynamics simulation was carried out for makisterone C-MAPK1, MAPK3, and AKT1 complexes.

Results: The potential phytochemical pool were identified (stigmast-5-en-3-ol, esculentic acid, rutin, and makisterone C) and based on network pharmacology and molecular docking studies, makisterone-C was proposed to be the most promising ingredient. Furthermore, the investigation revealed 14 genes as critical "hubs" involved in combating melanoma that are manipulated by the above-mentioned 4 active ingredients and modulate multiple signaling in melanoma development.

Conclusion: This study insights into the potential anti-melanoma effects of phytochemical pool from Diplazium esculentum using network pharmacology analysis, molecular docking, and simulation tailing makisterone C as a lead moiety and suggests the need for makisterone C further evaluation in intervening melanoma progression.

Keywords: Diplazium esculentum; In silico studies; Melanoma; Network pharmacology.