Determination of Blood-Brain Barrier Hyperpermeability Using Intravital Microscopy

Methods Mol Biol. 2024:2711:117-127. doi: 10.1007/978-1-0716-3429-5_10.

Abstract

The blood vessels that vascularize the central nervous system (CNS) exhibit unique properties, termed the blood-brain barrier (BBB). The BBB allows these blood vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. BBB permeability can furthermore be affected by various factors, including but not limited to TJP expression, size, shape, charge, and type of extravascular molecules, as well as the nature of the vascular beds. The BBB is essential for the proper maintenance of CNS function, and its structural integrity has been implicated in several disorders and conditions. For instance, it has been shown that in the cases of traumatic brain injury (TBI), TBI-associated edema, and increased intracranial pressure are primarily caused by cases of hyperpermeability seen because of BBB dysfunction. Intravital microscopy is one of the most reliable methods for measuring BBB hyperpermeability in rodent models of BBB dysfunction in vivo. Here, we describe the surgical and imaging methods to determine the changes in BBB permeability at the level of the pial microvasculature in a mouse model of TBI using intravital microscopy.

Keywords: Blood-brain barrier; Intravital microscopy; Traumatic brain injury.