Novel Ultralow-Potential Electrochemiluminescence Aptasensor for the Highly Sensitive Detection of Zearalenone Using a Resonance Energy Transfer System

Anal Chem. 2023 Oct 10;95(40):15125-15132. doi: 10.1021/acs.analchem.3c03437. Epub 2023 Sep 29.

Abstract

An ultralow-potential electrochemiluminescence (ECL) aptasensor has been designed for zearalenone (ZEN) assay based on a resonance energy transfer (RET) system with SnS2 QDs/g-C3N4 as a novel luminophore and CuO/NH2-UiO-66 as a dual-quencher. SnS2 QDs were loaded onto g-C3N4 nanosheets and enhanced the ECL luminescence via strong synergistic effects under an ultralow potential. The UV-vis absorption spectrum of CuO/NH2-UiO-66 exhibits considerable overlap with the ECL emission spectrum of SnS2 QDs/g-C3N4, an important consideration for the RET process. In order to stimulate RET, the ZEN aptamer and complementary DNA are introduced for conjugation between the donor and the acceptor. With the binding interaction between ZEN by its aptamer, CuO/NH2-UiO-66 is removed from the electrode surface, resulting in the inhibition of the RET system and an increase in the ECL signal. Under optimal conditions, the as-prepared aptasensor quantified ZEN from 0.5 μg·mL-1 to 0.1 fg·mL-1 with a low limit of detection of 0.085 fg·mL-1, and it exhibited good stability, excellent specificity, high reproducibility, and desirable practicality. The sensing strategy provides a method for mycotoxins assay to monitor food safety.