Development of Zn-2Cu- x Mn/Mg Alloys for Orthopedic Applications: Mechanical Performance to In Vitro Degradation under Different Physiological Environments

ACS Biomater Sci Eng. 2023 Nov 13;9(11):6058-6083. doi: 10.1021/acsbiomaterials.3c00641. Epub 2023 Sep 29.

Abstract

Zinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2Cu-xMn/Mg (x = 0, 0.1, and 0.5) alloys, aiming to achieve good mechanical strength with excellent elongation, desirable wear resistance, and suitable corrosion rate. The effect of Mn/Mg addition on the structural, mechanical, wear, and degradation behaviors of the Zn-2Cu-xMn/Mg alloys was thoroughly investigated. Degradation and tribological behaviors of the alloys were explored in the presence of simulated body fluid (SBF), Dulbecco's modified Eagle medium (DMEM), and DMEM with a 10% fetal bovine serum (FBS) solution. Alloy elements and hot rolling improve their mechanical properties significantly due to precipitation hardening, grain refinement, and solid solution strengthening owing to the formation of MnZn13 and Mg2Zn11 phases. Among all the alloys, the Zn-2Cu-0.5Mn alloy achieved the highest ultimate tensile strength (UTS) of ∼405 MPa and yield strength (YS) of ∼293 MPa with an excellent elongation of ∼51%. The corrosion behavior of the alloys as determined by a potentiodynamic polarization study under different solutions follows the sequence Zn-2Cu < Zn-2Cu-0.5Mn < Zn-2Cu-0.1Mn < Zn-2Cu-0.1Mg < Zn-2Cu-0.5Mg. The corrosion rate by immersion testing for 30 and 90 days also follows the same sequence. The corrosion rate in different solutions follows the order SBF > DMEM + 10%FBS > DMEM. The addition of Mn/Mg also improves the wear resistance and slows the wear rate under wet conditions. The bending test results also indicate the highest bending strength of ∼375 MPa for the Zn-2Cu-0.5Mn alloy, among all the alloys. The bending and tensile strengths deteriorate continuously after the immersion for 30 and 90 days in the solution of SBF, DMEM, and DMEM + 10%FBS. Therefore, the Zn-2Cu-xMn/Mg (x = 0.1 and 0.5) alloys can be considered potential biodegradable implant materials.

Keywords: EIS; Zn-Cu-Mn/Mg alloys; biodegradation behavior; strength retention behavior; tribological study.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys* / chemistry
  • Biocompatible Materials*
  • Materials Testing
  • X-Ray Diffraction
  • Zinc

Substances

  • Biocompatible Materials
  • Alloys
  • Zinc