Exploring Adaptive Graph Topologies and Temporal Graph Networks for EEG-Based Depression Detection

IEEE Trans Neural Syst Rehabil Eng. 2023:31:3947-3957. doi: 10.1109/TNSRE.2023.3320693. Epub 2023 Oct 13.

Abstract

In recent years, Graph Neural Networks (GNNs) based on deep learning techniques have achieved promising results in EEG-based depression detection tasks but still have some limitations. Firstly, most existing GNN-based methods use pre-computed graph adjacency matrices, which ignore the differences in brain networks between individuals. Additionally, methods based on graph-structured data do not consider the temporal dependency information of brain networks. To address these issues, we propose a deep learning algorithm that explores adaptive graph topologies and temporal graph networks for EEG-based depression detection. Specifically, we designed an Adaptive Graph Topology Generation (AGTG) module that can adaptively model the real-time connectivity of the brain networks, revealing differences between individuals. In addition, we designed a Graph Convolutional Gated Recurrent Unit (GCGRU) module to capture the temporal dynamical changes of brain networks. To further explore the differential features between depressed and healthy individuals, we adopt Graph Topology-based Max-Pooling (GTMP) module to extract graph representation vectors accurately. We conduct a comparative analysis with several advanced algorithms on both public and our own datasets. The results reveal that our final model achieves the highest Area Under the Receiver Operating Characteristic Curve (AUROC) on both datasets, with values of 83% and 99%, respectively. Furthermore, we perform extensive validation experiments demonstrating our proposed method's effectiveness and advantages. Finally, we present a comprehensive discussion on the differences in brain networks between healthy and depressed individuals based on the outputs of our final model's AGTG and GTMP modules.