Comparison between Three-Dimensional Printed Titanium and PEEK Cages for Cervical and Lumbar Interbody Fusion: A Prospective Controlled Trial

Orthop Surg. 2023 Nov;15(11):2889-2900. doi: 10.1111/os.13896. Epub 2023 Sep 28.

Abstract

Objectives: The three-dimensional printing titanium (3DPT) cage with excellent biomechanical properties and osseointegration capabilities has been initially used in spinal fusion, while the polyetheretherketone (PEEK) cage, a bioinert material device, has been a widely used for decades with relatively excellent clinical outcomes. This study was performed to investigate the early radiographic and clinical outcomes of 3DPT cage versus PEEK cage in patients undergoing anterior cervical discectomy and fusion (ACDF) and transforaminal lumbar interbody fusion (TLIF).

Methods: This prospective controlled trial, from December 2019 to June 2022, included patients undergoing ACDF and TLIF with 3DPT cages and compared them to patients using PEEK cages for treating spinal degenerative disorders. The outcome measures included radiographic parameters (intervertebral height [IH], subsidence, fusion status, and bone-cage interface contact) and clinical outcomes (Japanese Orthopaedic Association [JOA], Neck Disability Index [NDI], Oswestry Disability Index [ODI], Short Form 12-Item Survey [SF-12], Visual Analog Scale [VAS], and Odom's criteria). Student's independent samples t test and Pearson's chi-square test were used to compare the outcome measures between the two groups before surgery and at 1 week, 3 and 6 months after surgery.

Results: For the patients undergoing ACDF, the 3DPT (18 patients/[26 segments]) and PEEK groups (18 patients/[26 segments]) had similar fusion rates at 3 months and 6 months follow-up (3 months: 96.2% vs. 83.3%, p = 0.182; 6 months: 100% vs. 91.7%, p = 0.225). The subsidence in the 3DPT group was significantly lower than that in the PEEK group (3 months: 0.4 ± 0.2 mm vs. 0.9 ± 0.7 mm p = 0.004; 6 months: 0.7 ± 0.3 mm vs. 1.5 ± 0.8 mm, p < 0.001). 3DPT and PEEK cage all achieved sufficient contact with the cervical endplates. For the patients undergoing TLIF, the 3DPT (20 patients/[26 segments]) and PEEK groups (20 patients/[24 segments]) had no statistical difference in fusion rate (3 months: 84.6% vs. 58.3%, p = 0.059; 6 months: 92.3% vs. 75%, p = 0.132). The subsidence was lower than that in the PEEK group without significantly difference (3 months: 0.9 ± 0.7 mm vs.1.2 ± 0.9 mm p = 0.136; 6 months: 1.6 ± 1.0 mm vs. 2.0 ± 1.0 mm, p = 0.200). At the 3-month follow-up, the bone-cage interface contact of the 3DPT cage was significantly better than that of the PEEK cage (poor contact: 15.4% vs. 75%, p < 0.001). The values of UAR were higher in the 3DPT group than in the PEEK group during the follow-up in cervical and lumbar fusion, there were more statistical differences in lumbar fusion. There were no significant differences in the clinical assessment between 3DPT or PEEK cage in spinal fusion.

Conclusion: The 3DPT cage and PEEK cage can achieve excellent clinical outcomes in cervical and lumbar fusion. The 3DPT cage has advantage in fusion quality, subsidence severity, and bone-cage interface contact than PEEK cage.

Keywords: 3D Printed Titanium (3DPT) Cage; Anterior Cervical Discectomy and Fusion (ACDF); Polyetheretherketone (PEEK) Cage; Spinal Degenerative Disorders; Transforaminal Lumbar Interbody Fusion (TLIF).

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Humans
  • Ketones / therapeutic use
  • Lumbar Vertebrae / diagnostic imaging
  • Lumbar Vertebrae / surgery
  • Polyethylene Glycols / therapeutic use
  • Prospective Studies
  • Retrospective Studies
  • Spinal Fusion* / methods
  • Titanium*
  • Treatment Outcome

Substances

  • polyetheretherketone
  • Titanium
  • Polyethylene Glycols
  • Ketones