Shape-Memory Effect Enabled by Ligand Substitution and CO2 Affinity in a Flexible SIFSIX Coordination Network

Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202309985. doi: 10.1002/anie.202309985. Epub 2023 Oct 17.

Abstract

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, β, phases during activation. β did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to β after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

Keywords: CO2 Adsorption; Crystal Engineering; Flexible Coordination Networks; Nonporous to Porous Switching; Shape-Memory.