Disclosing the locale of transmembrane proteins within cellular alcove by machine learning approach: systematic review and meta analysis

J Biomol Struct Dyn. 2023 Sep 28:1-16. doi: 10.1080/07391102.2023.2260490. Online ahead of print.

Abstract

Protein subcellular localization is a promising research question in Proteomics and associated fields, including Biological Sciences, Biomedical Engineering, Computational Biology, Bioinformatics, Proteomics, Artificial Intelligence, and Biophysics. However, computational techniques are preferred to explore this attribute for a massive number of proteins. The byproduct of this conjunction yields diversified location identifiers of proteins. These protein subcellular localization identifiers are unique regarding the database used, organisms, Machine Learning Technique, and accuracy. Despite the availability of these identifiers, the majority of the work has been done on the subcellular localization of proteins and, less work has been done specifically on locations of transmembrane proteins. This systematic review accounts for computational techniques implemented on transmembrane protein localization. Moreover, a literature search on PubMed, Science Direct, and IEEE Databases disclosed no systematic review or meta-analysis on the cell's transmembrane protein locale. A Systematic review was formed under the guidelines of PRISMA by using Science Direct, PubMed, and IEEE Databases. Journal publications from 2000 to 2023 were taken into consideration and screened. This review has focused only on computational studies rather than experimental techniques. 1004 studies were reviewed and were categorized as relevant and non-relevant according to inclusion and exclusion criteria. All the screening was done through Endnote after importing citations. This systematic review characterizes the gap in targeting the locale of the transmembrane protein and will aid researchers in exploring its new horizons.Communicated by Ramaswamy H. Sarma.

Keywords: Protein; accuracy; deep learning; location; machine learning.

Publication types

  • Review