Joining of Aluminum and CFRP via Laser Powder Bed Fusion: Influence of Experimental Set-Up and Laser Processing on Microstructure and Mechanical Properties

Polymers (Basel). 2023 Sep 21;15(18):3839. doi: 10.3390/polym15183839.

Abstract

Additive-manufacturing-based joining methods enable tailored or even functionalized joints and allow for hybridization at small scales. The current study explored an innovative joining method for aluminum cast alloys (AlSi12) with thermoset carbon-fiber-reinforced polymers (CFRPs) via laser powder bed fusion (LPBF). The direct build-up of AlSi12 on a CFRP substrate proved to be challenging due to the dissimilar thermal properties of the considered materials, which led to substrate damage and low joint adhesion. These effects could be overcome by introducing an AlSi12 foil as an interlayer between the two joining partners, acting as a thermal barrier and further improving the AlSi12 melt wettability of the substrate. Within LPBF, the energy input in the form of volumetric laser energy density influenced both the porosity of the fused layers and the formation of thermally induced stresses due to the high cooling rates and different thermal expansion properties of the materials. While the AlSi12 volume density increased with a higher laser energy input, simultaneously increasing thermal stresses caused the debonding and deformation of the AlSi12 foil. However, within a narrow processing window of laser parameters, the samples achieved remarkably high shear strengths of τ > 20 MPa, comparable to those of conventional joining methods.

Keywords: additive manufacturing; fiber-reinforced polymer–metal joining; hybrid joints; laser powder bed fusion.