Incidence of Drug-Resistant Hospital-Associated Gram-Negative Bacterial Infections, the Accompanying Risk Factors, and Clinical Outcomes with Treatment

Antibiotics (Basel). 2023 Sep 9;12(9):1425. doi: 10.3390/antibiotics12091425.

Abstract

Extensive drug resistance to bacterial infections in hospitalised patients is accompanied by high morbidity and mortality rates due to limited treatment options. This study investigated the clinical outcomes of single and combined antibiotic therapies in extensive (XDR), multidrug-resistant (MDR) and susceptible strains (SS) of hospital-acquired infections (HAIs). Cases of hospital-associated drug-resistant infections (HADRIs) and a few susceptible strains from hospital wards were selected for this study. Bacteria identifications (IDs) and antimicrobial susceptibility tests (ASTs) were performed with a Vitek 2 Compact Automated System. Patients' treatment types and clinical outcomes were classified as alive improved (AI), alive not improved (ANI), or died. The length of hospital stay (LOHS) was acquired from hospital records. The HAI pathogens were Acinetobacter baumannii (28%), Escherichia coli (26%), Klebsiella pneumoniae (22%), Klebsiella (2%) species, Pseudomonas aeruginosa (12%), Proteus mirabilis (4%), and other Enterobacteriaceae. They were MDR (40.59%), XDR (24.75%), carbapenem-resistant Enterobacteriaceae (CRE, 21.78%) and susceptible (12%) strains. The treatments were either monotherapy or combined therapy with different outcomes. Monotherapy produced positive significant outcomes with E. coli infections, while for P. aeruginosa, there were no differences between the number of infections treated with either mono/combined therapies (50% each). Nonetheless, combined therapy had significant effects (p < 0.05) as a treatment for A. baumannii and K. pneumoniae infections. Clinical outcomes and LOHS varied with infecting bacteria. The prevalence of XDR and MDR HAIs was found to be significantly high, with no association with treatment type, LOHS, or outcome.

Keywords: antimicrobials; extensive drug resistance; hospital-associated infections; length of hospital stay; multidrug resistance.

Grants and funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT3581].