Pharmacological profiles and anti-inflammatory activity of pCN-diEPP and mCN-diEPP, new alpha9alpha10 nicotinic receptor ligands

Neuropharmacology. 2023 Dec 1:240:109717. doi: 10.1016/j.neuropharm.2023.109717. Epub 2023 Sep 25.

Abstract

Pain due to inflammation can be reduced by targeting the noncanonical nicotinic receptors (NCNR) in cells of the immune system that regulate the synthesis and release of pro- and anti-inflammatory cytokines. Although NCNR do not generate ion channel currents, the pharmacology of ion-channel forms of the receptors can predict drugs which may be effective regulators of the cholinergic anti-inflammatory system (CAS). Agonists of α7 type receptors have been definitively associated with CAS. Receptors containing α9 and α10 subunits have also been implicated. We have recently characterized two small molecules, pCN-diEPP and mCN-diEPP, as selective α9α10 agonists and antagonists, respectively. We used these drugs, along with nicotine, an α7 agonist and α9α10 antagonist, to probe the mixed populations of receptors that are formed when α7, α9, and α10 are all expressed together in Xenopus oocytes. We also evaluated the effects of the CN-diEPP compounds on regulating the ATP-induced release of interleukin-1β from monocytic THP-1 cells, which express NCNR. The compounds successfully identified separate populations of receptors when all three subunits were co-expressed, including a potential population of homomeric α10 receptors. The α9α10 agonist pCN-diEPP was the more effective regulator of interleukin-1β release in THP-1 cells. pCN-diEPP was also fully effective in a mouse model of inflammatory pain, while mCN-diEPP had only partial effects, requiring a higher dosage. The analgetic effects of pCN-diEPP and mCN-diEPP were retained in α7 knockout mice. Taken together, our results suggest that drugs that selectively activate α9α10 receptors may useful to reduce inflammatory pain through the CAS.