Inhibitory Mechanisms of trans-2-Hexenal on the Growth of Geotrichum citri- aurantii

J Fungi (Basel). 2023 Sep 15;9(9):930. doi: 10.3390/jof9090930.

Abstract

Geotrichum citri-aurantii (G. citri-aurantii) is one of the most important postharvest pathogens leading to a postharvest loss of citrus by causing sour rot. In this study, the antifungal activity of trans-2-hexenal, a natural component of essential oil, against G. citri-aurantii was evaluated. Trans-2-hexenal treatment inhibited the mycelia growth of G. citri-aurantii with a minimum inhibitory concentration and minimum fungicidal concentration of trans-2-hexenal at 0.50 and 1.00 μL/mL, respectively. Moreover, trans-2-hexenal efficiently reduced the incidence of sour rot of Satsuma fruit inoculated with G. citri-aurantii. Ultrastructural observations and Fourier transform infrared (FT-IR) results showed that trans-2-hexenal treatment affected the cell wall and cell membrane instructions of G. citri-aurantii. The content of β-1,3-glucan was significantly decreased after trans-2-hexenal treatment, but the cell wall permeability was not changed. The decrease in lipid and ergosterol contents might be responsible for this antifungal activity. Several important genes, FKS1, ERG1, ERG7, and ERG11, showed decreasing expression levels after trans-2-hexenal treatment. Molecule-docking results also indicated that trans-2-hexenal could join with the protein of FKS1, ERG1, ERG7, and ERG11 to impact enzyme activities. These results demonstrated that trans-2-hexenal is a promising fungicide for controlling sour rot of harvested citrus fruit by damaging the membrane integrity of G. citri-aurantii.

Keywords: G. citri-aurantii; antifungal mechanism; cell membrane; cell wall; trans-2-hexeanl.