Creation of Polymer Hydrogelator/Poly(Vinyl Alcohol) Composite Molecular Hydrogel Materials

Gels. 2023 Aug 23;9(9):679. doi: 10.3390/gels9090679.

Abstract

Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo-p-phenylene-terephthalamide) polymer (NaPPDT), and water-soluble polymer with the polar group, poly(vinyl alcohol) (PVA) in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of NaPPDT aqueous solutions (0.1 wt.%~1.0 wt.%) and PVA aqueous solutions exhibited thixotropic behavior in the relatively low concentration region (0.1 wt.%~1.0 wt.%) and spinnable gel formation in the dense concentration region (4.0 wt.%~8.0 wt.%) with 1.0 wt.% NaPPDT aq., showing a characteristic concentration dependence of mechanical behavior. In contrast, each single-component aqueous solution showed no such gel formation in the concentration range in the present experiments. No gel formation behavior was also observed when mixed with common anionic polymers other than NaPPDT. This improvement in gel-forming ability due to mixing may be due to the increased density of the gel's network structure composed of hydrogelator and PVA and rigidity owing to NaPPDT.

Keywords: composite; molecular hydrogel; poly(vinyl alcohol); polymer hydrogelator; thixotropic behavior.