Environmental Epigenomes

Epigenomes. 2023 Sep 7;7(3):21. doi: 10.3390/epigenomes7030021.

Abstract

Research in epigenetics has dramatically risen during the last decade to include aspects of environmental biology. However, many questions remain regarding the effects of environmental stressors on the epigenome, incorporating the particular role of epigenetic mechanisms in the adaptation and evolution of organisms in changing environments. Epigenetics is commonly defined as mitotically and/or meiotically heritable changes in gene function that occur without altering the underlying DNA sequence. It encompasses DNA (hydroxy)methylation, histone modifications, chromatin structure, and non-coding RNAs that may be inherited across generations under certain circumstances. Epigenetic mechanisms are perfect candidates to extend our understanding of the impact of environmental stressors on organisms and to explain the rapid phenomenon of adaptive evolution. Existing evidence shows that environmental cues can affect the epigenome and modify gene expression accordingly. These changes can then induce phenotypic modifications that are morphological, physiological, or behavioral at the organismal level. In this Special Issue focusing on environmental epigenetics, we provide an overview of influences to the epigenome that are driven by various environmental and evolutionary factors, with a particular focus on DNA methylation (DNAm). Five research groups have contributed insightful studies or reviews on (1) DNAm and demethylation events affected by the exposome; (2) DNAm as a potential biomarker to determine cardiometabolic risk early in life; (3) consequences of DNAm across multiple generations; (4) DNAm variation within natural animal populations; and (5) epigenetic mechanisms in genetically uniform organisms. Collectively, the articles from this Special Issue consistently support that environmental changes can induce long-lasting epigenetic effects within a given organism pertaining to individual risk for disease, or multi-generational impacts that ultimately impact evolution.

Keywords: DNA methylation; biomarkers; breast cancer; cardiometabolic health; ecoepigenetics; environmental epigenetics; population epigenetics; toxicoepigenetics; toxicology.

Publication types

  • Editorial