Design and Evaluation of an Intensive Care Unit Dashboard Built in Response to the COVID-19 Pandemic: Semistructured Interview Study

JMIR Hum Factors. 2023 Sep 26:10:e49438. doi: 10.2196/49438.

Abstract

Background: Dashboards and interactive displays are becoming increasingly prevalent in most health care settings and have the potential to streamline access to information, consolidate disparate data sources and deliver new insights. Our research focuses on intensive care units (ICUs) which are heavily instrumented, critical care environments that generate vast amounts of data and frequently require individualized support for each patient. Consequently, clinicians experience a high cognitive load, which can translate to suboptimal performance. The global COVID-19 pandemic exacerbated this problem by generating a large number of additional hospitalizations, which necessitated a new tool that would help manage ICUs' census. In a previous study, we interviewed clinicians at the University Hospitals Bristol and Weston National Health Service Foundation Trust to capture the requirements for bespoke dashboards that would alleviate this problem.

Objective: This study aims to design, implement, and evaluate an ICU dashboard to allow for monitoring of the high volume of patients in need of critical care, particularly tailored to high-demand situations, such as those seen during the COVID-19 pandemic.

Methods: Building upon the previously gathered requirements, we developed a dashboard, integrated it within the ICU of a National Health Service trust, and allowed all staff to access our tool. For evaluation purposes, participants were recruited and interviewed following a 25-day period during which they were able to use the dashboard clinically. The semistructured interviews followed a topic guide aimed at capturing the usability of the dashboard, supplemented with additional questions asked post hoc to probe themes established during the interview. Interview transcripts were analyzed using a thematic analysis framework that combined inductive and deductive approaches and integrated the Technology Acceptance Model.

Results: A total of 10 participants with 4 different roles in the ICU (6 consultants, 2 junior doctors, 1 nurse, and 1 advanced clinical practitioner) participated in the interviews. Our analysis generated 4 key topics that prevailed across the data: our dashboard met the usability requirements of the participants and was found useful and intuitive; participants perceived that it impacted their delivery of patient care by improving the access to the information and better equipping them to do their job; the tool was used in a variety of ways and for different reasons and tasks; and there were barriers to integration of our dashboard into practice, including familiarity with existing systems, which stifled the adoption of our tool.

Conclusions: Our findings show that the perceived utility of the dashboard had a positive impact on the clinicians' workflows in the ICU. Improving access to information translated into more efficient patient care and transformed some of the existing processes. The introduction of our tool was met with positive reception, but its integration during the COVID-19 pandemic limited its adoption into practice.

Keywords: CIS; COVID-19; EHR; EPR; ICU; clinical information system; critical care; dashboard; design; electronic health record; electronic patient record; health; human-centered design; intensive care; intensive care unit; interactive display; interview; participatory design; software engineering; thematic analysis.