Characterization of concomitant gradient fields and their effects on image distortions using a low-field point-of-care Halbach-based MRI system

Magn Reson Med. 2024 Feb;91(2):828-841. doi: 10.1002/mrm.29879. Epub 2023 Sep 25.

Abstract

Purpose: Concomitant gradient fields have been extensively studied at clinical field strengths. However, their effects have not yet been modeled for low-field point-of-care (POC) systems. The purpose of this work is to characterize the effects associated with concomitant fields for POC Halbach-array-based systems.

Methods: The concomitant fields associated with a cylindrical gradient coils designed for a transverse B 0 $$ {B}_0 $$ and a signal model including the tilting effect of the effective magnetic field are derived. The formalism is used to simulate and predict concomitant field related distortions. A 46-mT Halbach-array-based system with a maximum gradient strength of 15 mT/m is used to verify the model using two-dimensional spin-echo sequences.

Results: The simulations and experimental results are in good agreement with the derived equations. The fundamental characteristics of the concomitant field equations are different to conventional MRI systems: Image distortions occur primarily in the transverse directions and a cross-term only exists when applying transverse gradient pulses simultaneously.

Conclusion: The level of image warping in the frequency encoding direction is insignificant for the POC systems discussed here. However, when trying to achieve short echo-times by using strong phase encoding and readout-dephasing gradients, the combination can result in image warping and blurring which should be accounted for in image interpretation.

Keywords: Halbach-array; concomitant fields; image distortions; low-field.

MeSH terms

  • Artifacts*
  • Magnetic Fields
  • Magnetic Resonance Imaging / methods
  • Phantoms, Imaging
  • Point-of-Care Systems*