Rapid and efficient generation of a transplantable population of functional retinal ganglion cells from fibroblasts

Cell Prolif. 2024 Feb;57(2):e13550. doi: 10.1111/cpr.13550. Epub 2023 Sep 23.

Abstract

Glaucoma and other optic neuropathies lead to progressive and irreversible vision loss by damaging retinal ganglion cells (RGCs) and their axons. Cell replacement therapy is a potential promising treatment. However, current methods to obtain RGCs have inherent limitations, including time-consuming procedures, inefficient yields and complex protocols, which hinder their practical application. Here, we have developed a straightforward, rapid and efficient approach for directly inducing RGCs from mouse embryonic fibroblasts (MEFs) using a combination of triple transcription factors (TFs): ASCL1, BRN3B and PAX6 (ABP). We showed that on the 6th day following ABP induction, neurons with molecular characteristics of RGCs were observed, and more than 60% of induced neurons became iRGCs (induced retinal ganglion cells) in the end. Transplanted iRGCs had the ability to survive and appropriately integrate into the RGC layer of mouse retinal explants and N-methyl-D-aspartic acid (NMDA)-damaged retinas. Moreover, they exhibited electrophysiological properties typical of RGCs, and were able to regrow dendrites and axons and form synaptic connections with host retinal cells. Together, we have established a rapid and efficient approach to acquire functional RGCs for potential cell replacement therapy to treat glaucoma and other optic neuropathies.

MeSH terms

  • Animals
  • Fibroblasts
  • Glaucoma*
  • Mice
  • Optic Nerve Diseases*
  • Retina
  • Retinal Ganglion Cells / transplantation