Long-Lived Photo-Response of Multi-Layer N-Doped Graphene-Based Films

J Phys Chem C Nanomater Interfaces. 2023 Aug 30;127(36):17896-17905. doi: 10.1021/acs.jpcc.3c04670. eCollection 2023 Sep 14.

Abstract

New insights into the mechanism of the improved photo(electro)catalytic activity of graphene by heteroatom doping were explored by transient transmittance and reflectance spectroscopy of multi-layer N-doped graphene-based samples on a quartz substrate prepared by chitosan pyrolysis in the temperature range 900-1200 °C compared to an undoped graphene control. All samples had an expected photo-response: fast relaxation (within 1 ps) due to decreased plasmon damping and increased conductivity. However, the N-doped graphenes had an additional transient absorption signal of roughly 10 times lower intensity, with 10-50 ps formation time and the lifetime extending into the nanosecond domain. These photo-induced responses were recalculated as (complex) dielectric function changes and decomposed into Drude-Lorentz parameters to derive the origin of the opto(electronic) responses. Consequently, the long-lived responses were revealed to have different dielectric function spectra from those of the short-lived responses, which was ultimately attributed to electron trapping at doping centers. These trapped electrons are presumed to be responsible for the improved catalytic activity of multi-layer N-doped graphene-based films compared to that of multi-layer undoped graphene-based films.