Improved gelling and emulsifying properties of chicken wooden breast myofibrillar protein by high-intensity ultrasound combination with pH-shifting

Poult Sci. 2023 Nov;102(11):103063. doi: 10.1016/j.psj.2023.103063. Epub 2023 Aug 30.

Abstract

The functional properties of chicken wooden breast myofibrillar protein (WBMP) are impaired. The protein structure and functional properties of WBMP are investigated using high-intensity ultrasound (HIU, 20 kHz, 200, 400, 600, and 800 W) combined with pH-shifting. HIU promoted the unfolding of WBMP, reduced the particle size of WBMP, and enhanced electrostatic repulsion. Medium-power (200 and 400 W) HIU promoted the α-helix to β-sheet transformation, while high-power (600 and 800 W) HIU significantly (P < 0.05) increased the content of the random coil. The microstructure and images after storage further showed that 400 W HIU in combination with pH-shifting made the WBMP emulsion more uniform. In addition, gel performance analysis showed that the gel strength and water-holding capacity of the protein gel increased gradually after 400 W. Scanning electron microscope images also showed the formation of a stable network structure in the protein gel. This work could help promote the utilization of inferior proteins similar to WBMP, but the utilization rate still needs to be further improved.

Keywords: high-intensity ultrasound; myofibrillar protein; pH-shifting; physicochemical property; wooden breast.